SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1978). A 34, 143–157.

Acta Cryst. (1980). B36, 910–912

Structure du Tris(tétraoxomolybdate) de Cadmium et de Thorium

PAR SUZANNE LAUNAY

Laboratoire de Chimie Minérale, ER n° 9, CNRS, Université P. et M. Curie, Tour 54, 4 place Jussieu, 75230 Paris CEDEX 05, France

ET ALEXANDRE RIMSKY

Laboratoire de Minéralogie-Cristallographie associé au CNRS, n° 9, Université P. et M. Curie, Tour 16, 4 place Jussieu, 75230 Paris CEDEX 05, France

(Reçu le 5 avril 1979, accepté le 10 décembre 1979)

Abstract. CdTh(MoO₄)₃, $M_r = 824.4$, hexagonal, $P6_3/m$, a = 9.803 (8), c = 6.350 (2) Å, Z = 2, $d_x = 5.173$ Mg m⁻³. The structure is of special interest because it is of the same type as the perrhenates Na₂Th(ReO₄)₆, NaLa(ReO₄)₄ and Am(ReO₄)₃. The structure was solved from 645 independent reflections; an R(F) of 0.040 was obtained. An assembly of [Th(MoO₄)₃]_{∞} chains is formed along a ternary axis parallel to c. Adjacent chains are obtained by a 6₃ operator. These chains form tunnels in which the Cd atoms are situated. In this model, the Th atoms are in a hexagonal compact arrangement.

Introduction. La phase CdTh $(MoO_4)_3$ est obtenue dans l'état solide par recuit d'un mélange équimoléculaire CdMoO₄ et Th $(MoO_4)_2$ à 1323 K durant 24 h à l'air dans une nacelle de platine (Thoret & Launay, 1978). Ce composé est isomorphe des perrhénates suivants: Na₂Th $(ReO_4)_6$, NaLa $(ReO_4)_4$ et Am $(ReO_4)_3$, mis en évidence dans notre laboratoire (Ait Ali Slimane, Silvestre & Freundlich, 1978).

Les cristaux sont des prismes hexagonaux transparents allongés suivant c dont les faces sont d'indice du type (110). La classe de Laue est 6/m. Les conditions de réflexion sur 00l pour l pair conduisent au groupe d'espace $P6_3/m$ ou $P6_3$.

Nous avons enregistré le quart d'espace réciproque (-k et +k, 0 et +h, 0 et +l) jusqu'à la valeur de $\sin \theta/\lambda = 0.80 \text{ Å}^{-1}$, soit 2318 réflexions. Les conditions de mesure sont résumées dans le Tableau 1. Ces réflexions corrigées des dérives instrumentales ont été corrigées du facteur de Lorentz-polarisation, mais pas de l'absorption. Les facteurs de diffusion relatifs aux

Tableau 1.	Conditions of	de mesure
------------	---------------	-----------

Longueur d'onde	Mo K_{α} ($\lambda = 0,71073$ Å)
Appareil	Diffractomètre automatique à quatre cercles
Monochromateur	Graphite pyrolithique
$\theta_{min} - \theta_{max}$	2-34°
Mode de mesure	Balayage intégral θ -2 θ
	Domaine θ + w avec w = 1,30° + 0.50° tg θ
	Vitesse 0.05° s ⁻¹
Bruit de fond	Estimation du bruit en fonction de θ
Dimensions du cristal	$0.2 \times 0.15 \times 0.5$ mm
Coefficient d'absorption linéaire	$\mu(Mo K_{0}) = 19.9 \text{ mm}^{-1}$
Réflexions mesurées	2318
Réflexions non équivalentes (en choisissant la plus	645
torte dans les equivalentes)	

différents atomes sont extraits des International Tables for X-ray Crystallography (1974) et tiennent compte de leur diffusion anomale. La résolution de la structure a été poursuivie dans le groupe $P6_3/m$. L'étude des sections de Patterson a permis de déterminer la position des atomes de Cd, Th et Mo. Des sections de densité électronique, effectuées en apodisant pour éliminer les effets de diffraction dûs à la limitation du spectre réciproque vers les hautes fréquences, nous ont permis de placer les atomes d'oxygène.

Nous avons affiné les positions et les facteurs de température anisotrope à l'aide d'un programme d'affinement, par moindres carrés (*ORFXLS* 3; Busing, Martin & Levy, 1971). Pour les réflexions telles que sin $\theta/\lambda > 0.05$ Å⁻¹, la valeur de l'indice résiduel *R* est

© 1980 International Union of Crystallography

Tableau 2. Résultats des affinements

Affinement	(I)	(II)	(III)	(IV)
$\sin \theta / \lambda$ limites (Å ⁻¹)	0,05 à 0,80	0 à 0,80	0 à 0,80	0 à 0,80
N _o	1765	2318	645	537
N _v	32	32	32	32
Extinction isotrope $g(\times 10^4)$ Indice résiduel	-	0,0326	0,0316	0,0316
$R(F) = \frac{\sum F_o - F_c }{\sum F_o}$	0,06	0,08	0,05	0,040
$RW(F)^*$				
$= \left[\frac{\sum W(F_o - F_c)^2}{\sum W F_o ^2}\right]$	1/2 0,08	0,09	0,08	0,05
	0,12	0,13	0,07	0,06
$\bar{\sigma}F_{o} = \left[\frac{\sum W(F_{o} - F_{c})^{2}}{(N_{o} - N_{y})}\right]^{1/2}$	0,54	0,60	2,34	1,65

* La pondération est définie par $W = 1/[\sigma(F_o)]^2$.

Tableau 3. Paramètres atomiques $(\times 10^4)$

	x	У	Z
Cd	0	0	0
Th	ŧ	2	1
Мо	3883 (4)	290 ľ (4)	1 de la compañía de
O(1)	1818 (28)	1633 (29)	i
O(2)	4401 (28)	4879 (26)	i
O(3)	4650 (18)	2491 (17)	4718 (22)

Tableau 4. Principales distances interatomiques (Å) et angles significatifs (°)

Les atomes sont générés à partir de ceux du Tableau 3 par les opérations suivantes:

(i) $x, y, \frac{1}{2} + z$ (ii) $\frac{2}{3}, \frac{1}{3}, \frac{3}{4}$ (iii) $x - y, x, \frac{3}{4}$ (iv) $\bar{y}, x - y, \frac{1}{4}$ (v) $\bar{x}, \bar{y}, \bar{z}$	(vi) $y, y - x, \bar{z}$ (vii) $x - y, x, \frac{1}{2} + z$ (viii) $\bar{x}, \bar{y}, \frac{1}{2} + z$ (ix) $x, y, \frac{1}{2} - z$.
Cd–Cd ⁱ 3,17 Cd–Mo 3,77 (1)	Th-Mo 3,98 (1) Th-Mo ^{li} 4,06 (1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

0,06 (Tableau 2); avec toutes les réflexions, l'affinement conduit à R = 0,08 et $\sigma = 0,60$. En examinant les réflexions observées équivalentes, on remarque que l'intensité varie de 5 à 20% entre elles. Pour atténuer les effets dûs à l'absorption, nous avons conservé la réflexion la plus intense parmi les réflexions équivalentes; il nous reste 645 réflexions pour lesquelles, l'affinement conduit à une valeur de l'indice résiduel R = 0,050. En considérant la liste des F_o et F_c obtenue, on remarque que les réflexions extrêmement faibles sont surestimées. La surestimation expérimentale des taches faibles pourrait provenir soit de la diffusion thermique, soit de phénomènes de réflexions multiples; nous n'avons pas déterminé la cause; cependant l'agitation thermique des oxygènes le long de l'axe c a une valeur dix fois supérieure aux autres.

Dans un affinement final, en éliminant ces taches faibles et en utilisant un terme de correction d'extinction secondaire isotrope, l'indice résiduel R converge vers la valeur 0,040. Les positions atomiques sont donnés dans le Tableau 3; les distances interatomiques et les angles de liaison figurent au Tableau 4.*

Discussion. La projection de la structure suivant l'axe sénaire est représentée sur la Fig. 1:

- les atomes de cadmium sont au centre d'un octaèdre allongé, formé par les six atomes d'oxygène environnant (Fig. 2);

- les atomes de thorium sont entourés par neuf atomes d'oxygène placés aux sommets d'un prisme trigonal à faces latérales pyramidées (Fig. 3);

- les atomes d'oxygène forment des tétraèdres MoO_4 centrés par un atome de molybdène (Fig. 4). Ces tétraèdres presque réguliers, se répartissent aux sommets d'un octaèdre centré par le thorium.

L'architecture de ce cristal peut se décrire de la manière suivante: on définit une colonne de formule $[Th(MoO_4)_3]_{\infty}$, centrée par un axe ternaire en $(\frac{12}{3}z)$, parallèle à l'axe c, qui est constitué du thorium, par

^{*} Les listes des facteurs de structure et des factuers d'agitation thermique anisotrope ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 34907: 5 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Fig. 1. Projection de la structure suivant l'axe sénaire 6₃.

 $\overline{\sigma}$ (cd-O) = 0.012 Å Fig. 2. Environnement de l'atome de cadmium,

Fig. 3. Environnement de l'atome de thorium.

exemple en position $\frac{1}{3}\frac{2}{3}\frac{1}{4}$, entouré de trois tétraèdres MoO₄ au niveau $\frac{3}{4}$. Les atomes de thorium sont reliés par un pont O-Mo-O, répété par l'axe ternaire et la période c du cristal. Ces colonnes $[Th(MoO_4)_3]_{\infty}$ se placent parallèlement les unes aux autres suivant un assemblage hexagonal; on passe d'une colonne à l'autre par une translation $\frac{1}{3}\frac{1}{3}\frac{1}{2}$ (Fig. 1).

Entre ces colonnes se constitue un canal, centré par l'axe sénaire 6_3 dans lequel se logent les atomes de Cd (en 000 et $00\frac{1}{2}$). Les oxygènes des tétraèdres MoO_4 qui entourent le cadmium forment un octaèdre autour de celui-ci; ils se superposent les uns au-dessus des autres en mettant en commun une face. O(3) O(3) O(1) O(1) O(2) O(3) O(3)

Fig. 4. Environnement de l'atome de molybdène.

La structure confirme la morphologie du cristal: des chaînes periodiques de liaison peuvent être suivies:

- d'une part, parallèlement à l'axe c, suivant les colonnes $[Th(MoO_4)_3]_{\infty}$ définies ci-dessus;

- d'autre part, parallèlement à (110) suivant deux autres chaînes qui partent du cadmium à l'origine (000 et $00\frac{1}{2}$) passant par un tétraèdre MoO₄, le thorium $(\frac{121}{334})$ et un tétraèdre MoO₄, le tout se répétant par l'axe binaire hélicoïdal pour aboutir aux atomes de Cd en 010 et $01\frac{1}{2}$; ces deux chaînes définissent une face du type F suivant Hartman (1973) de notation (110).

Les mesures diffractométriques ont été effectuées au Laboratoire de Chimie Structurale des matériaux de l'Université de Paris VI.

Références

- AIT ALI SLIMANE, Z., SILVESTRE, J. P. & FREUNDLICH, W. (1978). C. R. Acad. Sci. 287, 409–410.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1971). ORXFLS 3. Report ORNL-59-4-37. Oak Ridge National Laboratory, Tennessee.
- HARTMAN, P. (1973). Structure and Morphology in Crystal Growth. An Introduction. Amsterdam: North-Holland.
- International Tables for X-ray Crystallography (1974). Tome IV, Tableau 2.2A. Birmingham: Kynoch Press.
- THORET, J. & LAUNAY, S. (1978). C. R. Acad. Sci. 287, 9-11.

Acta Cryst. (1980). B36, 912-914

Cerium–Iridium Ce₃Ir₃ and Ce₃Ir₄

BY J. M. MOREAU, D. PACCARD AND J. LE ROY

Laboratoire de Structure de la Matière, Université de Savoie, Chemin du Bray, Annecy-le-Vieux 74019, France

(Received 25 October 1979; accepted 19 November 1979)

Abstract. Ce₅Ir₃, P4/ncc, Z = 4, a = 11.267 (4), c = 6.367 (3) Å. This structure is of the Pu₅Rh₃ type. Ce₅Ir₄, Pnma, Z = 4, a = 7.436 (5), b = 14.776 (7),

c = 7.626 (6) Å; final R = 0.09 for 246 independent intensities. The structure is intermediate between Sm_sGe₄ and Gd_sSi₄ and is isotypic with Pu₅Rh₄.

0567-7408/80/040912-03\$01.00 © 1980 International Union of Crystallography